• Madeira Team

LOOP, HASH and MERGE Join Types

Today I’ll talk about the available JOIN operator types in SQL Server (Nested Loops, Hash and Merge Joins), their differences, best practices and complexity.

For the samples in this post, we’ll use the free AdventureWorks database sample available here: http://msftdbprodsamples.codeplex.com/releases/view/4004

Introduction: What are Join Operators?

A join operator is a type of an algorithm which the SQL Server Optimizer chooses in order to implement logical joins between two sets of data.

The SQL Server Optimizer may choose a different algorithm for different scenarios based on the requested query, available indexes, statistics and number of estimated rows in each data set.

It’s possible to find the operator which was used by looking at the execution plan that SQL Server has prepared for your query.

For more information on execution plans and how to read them, I recommend checking out the first chapter out of Grant Fritchey’s excellent book: http://www.simple-talk.com/sql/performance/execution-plan-basics/

NESTED LOOPS

“Nested Loops” is the simplest operator of the bunch.

We’ll take the following query as an example, which gets some order detail columns for orders placed during July 2001 (assuming the OrderDate column only includes dates without time):

Transact-SQL

SELECT OH.OrderDate, OD.OrderQty, OD.ProductID, OD.UnitPrice FROM Sales.SalesOrderHeader AS OH JOIN Sales.SalesOrderDetail AS OD ON OH.SalesOrderID = OD.SalesOrderID WHERE OH.OrderDate BETWEEN '2001-07-01' AND '2001-07-31'

1

2

3

4

5

6

7

8

9

10

SELECT

OH.OrderDate, OD.OrderQty, OD.ProductID, OD.UnitPrice

FROM

Sales.SalesOrderHeader AS OH

JOIN

Sales.SalesOrderDetail AS OD

ON

OH.SalesOrderID = OD.SalesOrderID

WHERE

OH.OrderDate BETWEEN '2001-07-01' AND '2001-07-31'

The resulting execution plan looks like this:

The operator on the top right is called the outer input and the one just below it is called the inner input.

What the “Nested Loops” operator basically does is: For each record from the outer input – find matching rows from the inner input.

Technically, this means that the clustered index scan you see as the outer input is executed once to get all the relevant records, and the clustered index seek you see below it is executed for each record from the outer input.

We’ll verify this information by placing the cursor over the Clustered Index Scan operator and looking at the tooltip:

We can see that the estimated number of executions is 1. We’ll look at the tooltip of the Clustered Index Seek:

This time we can see that the estimated number of executions is 179 which is the approximate number of rows returned from the outer input.

In terms of complexity (assume N is the number of rows from the outer output and M is the total number of rows in the SalesOrderDetail table): The complexity of this query is: O(NlogM) where “logM” is the complexity of each seek in the inner input.

The SQL Server Optimizer will prefer to choose this operator type when the outer input is small and the inner input has an index on the column(s) by which the two data sets are joined. The bigger the difference in number of rows between the outer and inner inputs, the more benefit this operator will provide over the other operator types.

Having indexes and up-to-date statistics is crucial for this join type, because you don’t want SQL Server to accidently think there’s a small number of rows in one of the inputs when in fact there are a whole lot. For example: Performing 10 times index seek is nothing like performing 100,000 times index seek, especially if the table size of the inner input is around 120,000 and you’d be better off doing one table scan instead.

MERGE Join

The “Merge” algorithm is the most efficient way to join between two very large sets of data which are both sorted on the join key.

We’ll use the following query as an example (which returns a list of customers and their sale order identifiers):

Transact-SQL

SELECT OC.CustomerID, OH.SalesOrderID FROM Sales.SalesOrderHeader AS OH JOIN Sales.Customer AS OC ON OH.CustomerID = OC.CustomerID

1

2

3

4

5

6

7

8

SELECT

OC.CustomerID, OH.SalesOrderID